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ABSTRACT

In principle it is possible to reconstruct an
astronomical object with infinitely fine resolution from the
measured image intensity provided by an ideal, noisefree
telescope of finite aperure. In the presence of noise, this
reconstruction can only be carried past the "Rayleigh limit" to
a certain point. There are important implications of these
facts for space astronomy, which make worthwhile the study of
theories of artificially increasing resolution. We discuss
the application of these techniques to real systems and con-
clude that the small amount of unavoidable noise in actual
telescopes precludes extension of their resolution signifi-
cantly beyond the Rayleigh limit.
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I. Introduction:

The achievement of "diffraction-limited" telescope
performance 1s an exciting possibility for space astronomy
and is one of its primary justifications. The angular resolu-
tion of a space telescope 1s commonly stated to be about A/D
where X is the wavelength of light and D is the telescope
aperture. However, the theory of linear filters in electrical
engineering has shown that in principle it is possible to
achieve an effective angular resolution much finer than A/D.
Knowing the optical characteristics of a telescope and certain
general a priori information about an astronomical object,
we can recreate every detail of the original object in the

absence of noise.(l) Of course no actual system is nolse-free,
so the theory of object reconstruction can only be used in
practice to a limited extent. Nevertheless, if we could only
double the resolution of a space telescope - e.g., achieve the
resolution performance of a two meter telescope with a one
meter telescope, the implications for the space program would
be great. These facts Justify this short study, even though
we will find that for any actual telescope only a small
resolution increase can be achieved by artificially enhancing
the images it yields.

The present paper discusses two particular schemes
for enhancing the resolution of space telescopes. The followlng
section will discuss the procedures which theoretically can be
used to enhance the resolution of an optical image. We then
treat the effects of noise on the ability to increase resolu-
tion. A discussion of the significance of these results
for the kinds of observation of most interest to space astronomy
is given in Section IV, and the reader who 1s not interested
in the detalls of the theory may skip to that sectiop now.

II. The Concept of Object Restoration:

This section discusses in a general way the concepts
involved in the theory of reconstructing a high resolution
object from a low resolution image. The following section 1is
less tutorial and considers the quantitative implications of
this theory for real telescopes.
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In the following analysis we will for
simplicity restrict ourselves to one-dimensional images
and objects. The results are easily extended to actual two-
dimensional objects because the two dimensions are imaged
independently since the theory is linear. The telescopes used
wlll have square apertures, which gives results differing only
slightly from those for a round aperture. These assumptions
simplify the analysis significantly, but the results are still
applicable to real telescopes.

The object intensity in the object plane is denoted
by s(x), and the image intensity (in the absence of noise) is
r(x). Units 1n the object and image planes are so chosen that
the same coordinate, x, describes corresponding points in the
two planes. The effect of a telescope is to spread a point
source of light in the object plane into a region in the image
plane. That is, if s(x) = é(x-u), then r(x) = h(x-u), where
§(x) 1is the Dirac delta function (unit impulse function at
x = u) and h(x) is the point spread function of the telescope
and describes diffraction effects arising from the finite
wavelength of light. The image of a general object is deter-
mined from :

r(x) = deu h(x-u)s(u) (1)

Since this is a convolution, the fourier transforms of r, h,
and s are related by

R(f) = H(f)s(f) (2)

where f is spatial frequency (e.g., cycles/mm) and where

-}

R(f) = J[dx o2mifx r(x) (3)

- OO

and similarly for H(f) and S(f). H(f) is known as the Optical
Transfer Function of the telescope and tells how the (complexi
amplitude of the object at each spatial frequency 1s affected
by the telescope to give the amplitude of the corresponding
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frequency component of the image. The modulus of the optical
transfer function is known as the Modulation Transfer Function.

H(f) has the property that it 1is zero beyond some
critical spatilal frequency fo. This 1nability of a telescope
to pass high spatial frequencies means that it cannot physically
image details of an object with a resolution greater than some
definite value which corresponds to the Rayleigh 1limit if
"resolution" is properly defined. However, we can show that
even though the image intensity r(x) does not contaln frequencies
greater than f,, i1t can be mathematically manipulated to yield
s(x), which contains all frequencies, provided that s(x) is of
finite extent in space.{I) This limitation is met by the objects

of interest in astronomy (e.g. galaxies, double star systems,
etc.).

The general idea in reconstructing s(x) is the following.
If s(x) 1s a finite object (s(x)=0 for |x|>L), then S(f) is an
analytic function of f. This fact is easily proven (for example,
see Reference 1). The measured r(x) can be used to form R(f),
and h(x) or H(f) are known. Therefore, S(f) can be found for
f<f, from equation (2). Once S(f) for f<f, is known, then
S(f) for f>f, can be found by analytically continuing S(f).
That 1s, since S(f) 1is analytic, its value 1in the restricted
frequency domain passed by the telescope determines its value
at all frequencies. This object reconstruction process 1s
schematically represented in Figure 1. From this figure we
can see the dependence of the results on the assumption that
there is no noise. If the S(f) (f<f,) that we produce differs
even slightly from its true value, then as we analytically
extend S(f) to higher values of f, the error can increase very
rapidly.

This discussion has shown why it is possible in
principle to reconstruct an object at high frequencies. To
quantitatively analyze the effects of noise on this recon-
struction, it is convenlent to use a different reconstruction
scheme, one which has been studied extensively.(2) It is
based not on the frequency space relation between S(f) and R(f)
(equation (2)), but rather on the integral relation between
s(x) and r(x) (equation (1)). Equation (1) is an integral
equation relating the measured intensity r(x) to the unknown
object intensity s(x) via a known kern8l h(x-u). Since
s(x)=0 for |x|>L, we are trying to solve

r(x) = dx h (x-u)s(x). (4)
-L
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The solution of (4) is given in terms of the eigenfunctions
¢i(x) and engenvalues Ay of the integral operator in (4):

p

/
‘/ dx h(x—u)¢i(x) = Ai¢i(x). (5)

-L

From equations(5) and (4) it is easy to show that s(x) is
given in terms of r(x) by

o«

-
s(x) = zi——%_<¢i,r>¢i(x) (6)
i

i=o

where we have assumed that the ¢, (x) have been made ortho-
normal and where 1

L .
<py,r> = }r dx ¢, (x)r(x) . (7)
-1

Another more transparent form of (6) is
Ai<¢i,s> = <¢i,r> (8)

which can be simply interpreted. Equation (8) states that the
projection of the image r(x) onto the basis function ¢4 (x)
("the ith component of r(x)") is simply Ai times the projection
of s(x) onto ¢3(x). The greater 1 is, the more nodes there are
in ¢5(x) and the smaller A4y is, so that "high frequency" components
of the object are multiplied by a small number to give the high
frequency content of the image. We can now show in a crude
way why noise in the image plane can be so damaging to the
reconstruction. If we measure an intensity r(x)+n(x) in the
image plane, where n(x) is noise added to the image r(x),
and perform the operation shown in equation (6), then we
obtain an incorrect reconstruction of the object intensity,

" denoted ©m(x):
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5(x) = %i[<¢i,r>+<¢i,n>]¢i<x). (9)

i=o

The error in the reconstruction, e(x), is the difference
between s(x) and s(x):

e(x) T 5(x) - s(x) =\ F <n,9;4,(x), (10)
1
i=o
or equivalently
_ 1
€047 T 3 <Mhey> - (11)

1

Equation (11) displays very clearly the fact that the error

at high spatial frequencies is given by the noise at these

frequencies multiplied by a large number r - the larger 1 is
i

the smaller Ai is and it approaches zero extremely fast as i

increases.

This discussion shows that as 1 increases to infinity
in the sum in equations (6), (9), and (10), the effect of the
error increases without bounds unless <n,¢.> -0 very quickly
for large i. Thus for a real system the series in (9)
should be terminated at a value of i, denoted N, which is high
enough to give a good representation of s(x), but which is
low enough that the noise does not completely submerge the
reconstructed object. If the value of N obtained in this
corresponds to a function ¢, which has higher frequency
components than those corregponding to the Rayleigh criterion,
then it is possible to go beyond "diffraction-limited" per-
formance.

IIT. The Quantitative Effect of Noise on Object Reconstruction:

The preceeding section has given the conceptual
foundations of the object reconstruction problem. We now
discuss the effect of noise in a quantitative way in order
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to determine if it is practical to extend the resolution of

a space telescope beyond the Rayleigh limit. To do this, we
must treat specific object reconstruction techniques, as
the quantitative results might depend on the method used. We
will consider two particular techniques. One of these (method
A) is based on an expansion in the eigenfunctions of the
integral operator based on the point spread function - an
expansion in the ¢,(x) of the preceeding section. The other
ftechnique is based on analytically extending S(f), f<f,, into
the f>f, domain (method B).

Method A:

The general ideas of this method are contained in
equations (5) and (6) in the preceeding section. If the par-
ticular h(x) characterizing a space telescope is used in (5),
then the solutions of (5), along with the measured values of
r(x), determine s(x) from equation (6). For the square aperture
telescope that we use,

h(x) = 2f, sinc 2f,x (Reference U4) (12)
where
sinc u = Sin tu (13)
Tu

The cutoff frequency f, is given in terms of the telescope
aperture D, focal length F, and the wavelength of light by

_ D
fo = ST - (14)

The eigenfunctions and eigenvalues of (5) with the kern§1 given
in (12) have been studied in detail in the literature(3), and
their specific form need not be given here. If these eigen-
functions are used in (6), and if the sum in (6) only extends
from 1 = 0 to 1 = N, then the mean squared error in s(x) due

to noise can be calculated, given the noise statistics. This
has been done by Rushforth and Harris(Y4) for different types of
noise. For white noise in the image which has had its fre-

quency components greater than f, discarded, the mean squared
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error in the reconstructed object s(x) is proportional to

L . This sum is shown in Figure 2 as a function of N
X 2L,

=0"1
and the parameter C = 2nLfo. The first variable is simply
the ratio (resolution in the reconstructed object)/(Rayleigh
criterion resolution). The parameter C may be interpreted as
the number of Rayleigh resolution distance elements spanned by
the object (e.g., a galaxy whose angular size 1is five times
A/D would have Ca5). Note the precipitous rise of the sum

over Ai_l as the Rayleigh criterion resclution is surpassed.

The rise 1s so fast that any reasonable noise in the image will
not permit reconstruction beyond some definite resolution
determined by the value of C. This limiting resolution 1s

given as a function of C in Figure 3 for two signal/noise
ratios. These curves were obtained by determining from Figure 2
the resolution at which the noise power is increased to the
extent that it equals the signal power. The dashed line

shows the resolution achievable, given an a priori object size,
without using the methods described here. Note the insensitivity
of the resolution achievable to large changes in the signal/
noise ratio. The significance of this result will be discussed
in the next section, but it is immediately obvious that this
method offers little possibility of increasing the resolution

of an actual system.

Method B

This method, described in detail in Reference 5,
uses the Whittaker-Shannon sampling theorem of information
theory to analytically continue the spatial frequency components
of s(x) from their values for f<f, to the region f>fo. The
effect of noise has not to our knowledge been analytically
studied for this method. We have modeled a telescope and thils

reconstruction method on a computer(6), and have empirically
determined at what resolution, as a function of the parameter C,
this method breaks down due to noise. The results show that this
method is subject to the same limitations as Method A. Further
discussion of this method will be documented separately.

We conclude from this analysis that, independent of
the reconstruction method used, there are fundamental limitations
to improving telescope resolution beyond a rather well-defined
point in the presence of any reasonable amount of noise. This
point may, however, be less than the usually stated diffraction
criterion (but not much less for objects of astronomical
interest). The important parameter which determines the
resolution that can be obtalned 1is

C = 27 Lf, (15)
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which, as noted before, is the number of Rayleigh criterion
resolution elements spanned by the object (i.e., how many
times larger than D it 1s). We now go on to consider the
relation of the needs of astronomy to the results of this
analysis.

IV. Implications for Space Astronomy:

The preceeding sections have shown that only slight
improvements in resolution can be achieved in practice by
artificial enhancement of images. To know whether these
slight improvements are significant for space astronomy we
must consider the types of astronomical observations which
have been identified as benefitting from high resolution(7).
High resolution 1s scientifically valuable in four major areas
which we now discuss individually:

(7)

1. Detection of Faint Point Sources:

This is achieved with a high resolution
telescope because the physical size of the
image of a point source in the focal plane is
small. Such concentration of the light from
an object increases its contrast with the
background light from the sky a?g so permits
fainter sources to be detected. ) Calcula-
tions show that a 120 inch, diffraction-
limited telescope could detect 29th magnitude
stars, while the best that can be done from
the earth is about 24th magnitude. This
represents the detection of sources 100
times fainter than can be detected from the
earth. Obviously this is a physical, light
gathering process, and the analytical tech-
niques that we have been discussing are not .
relevant to this problem.

2. Study of the Large Scale Structure of the
Universe:

This is achileved by measuring the velocities
and distribution in space of galaxies more
distant than those observed from the earth's
surface. The velocities of these faint sources
can be measured spectroscopically only because
their light 1is concentrated into a small region
of the focal plane by a high resolution telescope.
Thus this measurement cannot benefit from
artificial enhancement. The distance of galaxies
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is measured in two ways. The most accurate

and the one used for nearby galaxies involves
resolving certain types of stars of known luminosity
and measuring their apparent brightness. To
resolve small scale details of a galaxy, 1t must
occupy an area in the focal plane covering many
Rayleigh resolution cells. For such an object the
parameter C defined in the previous section is
large and from Figure 3 we see that for large C
only the Rayleigh resolution can be achieved, so
that artificial resolution enhancement techniques
are of no use here. The angular size of more
distant galaxies provides a crude measure of their
distance or of the curvature of the universe. If
the angular size of such a galaxy 1s greater than
A/D, it can be measured directly. If it 1is
smaller, we cannot apply the theory of the
preceeding sections unless we have an a priori
bound on the size of the object. We do not have
such a bound since it is the size 1tself that

we are trying to measure, so resolution enhancement
techniques are of no use here.

3. Structure and Evolution of Individual Galaxies:

This measurement again involves a large value
for the parameter C and so cannot take advantage
of resolution enhancement techniques.

4, Planetary Surface and Atmosphere Mapping:

The comments just made apply to this case
also.

In spite of the poor possibilities for applying
resolution enhancement techniques to space astronomy, we want
to emphasize that certain types of artificial image enhancement
can be useful. We have shown that extension of our knowledge
of an object to spatial frequencies greater than f,, the
"Rayleigh 1limit", is not a useful technique in Space Astronomy.
However, frequencies less than f, are passed by the telescope,
and since we know the optical transfer function of the instru-
ment we know quantitatively the extent to which each of these
frequencies has been degraded. This implies that we can
enhance the high frequencies in the image by the proper amount
needed to obtain a better idea of the structure of the object
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than is obtained by looking at the raw data(B). Such enhance-
ment techniques would be especlally useful for obtaining
information about galactic and planetary structure. These
fechniques are currently of great interest and under intensive
study. However, resolution beyond the Rayleigh 1limit of a
given telescope will only be obtailned by going to other,
larger telescopes or, what is perhaps more practical, optical
interferometers and aperture synthesis technlques.
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